Journal Article
| Title | Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration. | 
| Publication Type | Journal Article | 
| Authors | Tiago, T, Marques-da-Silva, D, Samhan-Arias, AK, Aureliano, M, Gutiérrez-Merino, C | 
| Year of Publication | 2011 | 
| Journal | Cell Calcium | 
| Volume | 49 | 
| Issue | 3 | 
| Date Published | 2011 Mar | 
| Pagination | 174-83 | 
| ISSN | 1532-1991 | 
| Keywords | Actin Cytoskeleton, Animals, Calcium, Calcium Channel Agonists, Calcium Channels, L-Type, Cells, Cultured, Cerebellum, Molsidomine, Neurons, Nifedipine, Oxidative Stress, Peroxynitrous Acid, Pyrroles, Rats, Rats, Wistar | 
| Abstract | Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.  |  
| DOI | 10.1016/j.ceca.2011.01.009 | 
| Sapientia | |
| Alternate Journal | Cell Calcium | 
| PubMed ID | 21356558 | 


