2024 |
Vivanco-Bercovich M, Sandoval-Gil JMiguel, Bonet-Meliá P, et al. Marine heatwaves recurrence aggravates thermal stress in the surfgrass Phyllospadix scouleri. Marine Pollution Bulletin. 2024;199:115943. doi:10.1016/j.marpolbul.2023.115943 |
2024 |
Denis V, Ferrier‐Pagès C, Schubert N, et al. Heterotrophy in marine animal forests in an era of climate changeABSTRACT. Biological Reviews. 2024. doi:10.1111/brv.13053 |
2023 |
Tuya F, Schubert N, Aguirre J, et al. Levelling-up rhodolith-bed science to address global-scale conservation challenges. Science of The Total Environment. 2023:164818. doi:10.1016/j.scitotenv.2023.164818 |
2022 |
Pérez-Castro MÁngel, Schubert N, de Oca GAng-Montes, Leyte-Morales GEsteban, Eyal G, Hinojosa-Arango G. Mesophotic Coral Ecosystems in the Eastern Tropical Pacific: The current state of knowledge and the spatial variability of their depth boundaries. Science of The Total Environment. 2022;806(2). |
2022 |
Rossi S, Bramanti L, Horta PAntunes, et al. Protecting global marine animal forests. Science. 2022;376(6596). doi:10.1126/science.abq783 |
2022 |
Schubert N, Alvarez-Filip L, Hofmann LC. Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production. Climate Change Ecology. 2022;4:100059. doi:10.1016/j.ecochg.2022.100059 |
2022 |
Schubert N. Rhodolith Physiology Across the Atlantic: Towards a Better Mechanistic Understanding of Intra- and Interspecific Differences. Pena V, Salazar VW, Horta PA, et al., eds. Frontiers in Marine Science. 2022;9. doi:10.3389/fmars.2022.921639 |
2022 |
Berchez F. Brazil: heed price of marine mining for an alternative fertilizer. A. HPaulo, Sissini M, Tiago CG, et al., eds. Nature. 2022;607(7918):239 - 239. doi:10.1038/d41586-022-01890-x |
2022 |
Hoffmann LC, Schoenrock KM, Kamenos NA, Aguirre J, Silva J, Schubert N. Editorial: Coralline algae: Past, present, and future perspectives. Frontiers in Marine Science. 2022;9. doi:10.3389/fmars.2022.1097273 |
2021 |
Schubert N, Hofmann LC, Saá ACAlmeida, et al. Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification. Scientific Reports. 2021;11(1). doi:10.1038/s41598-021-90632-6 |
2021 |
Schubert N, Santos R, Silva J. Living in a Fluctuating Environment Increases Tolerance to Marine Heatwaves in the Free-Living Coralline Alga Phymatolithon lusitanicum. Frontiers in Marine Science. 2021;8. doi:10.3389/fmars.2021.791422 |
2020 |
M. Sissini N, Berchez F, Hall-Spencer J, et al. Brazil oil spill response: Protect rhodolith beds. Sills J, ed. Science. 2020;367(6474):156 - 156. doi:10.1126/science.aba2582 |
2020 |
Schubert N, Schoenrock KM, Aguirre J, et al. Editorial: Coralline Algae: Globally Distributed Ecosystem Engineers. Frontiers in Marine Science. 2020;7. doi:10.3389/fmars.2020.00352 |
2020 |
Saá ACAlmeida, Crivellaro MS, Winter BB, et al. Unraveling interactions: do temperature and competition with native species affect the performance of the non-indigenous sun coral Tubastraea coccinea?. Coral Reefs. 2020;39(1):99 - 117. doi:10.1007/s00338-019-01870-0 |
2020 |
Keith DA, Nelson W, Fragkopoulou E, Assis J, Schubert N, eds. Iucn Global Ecosystem Typology 2.0: Descriptive Profiles For Biomes And Ecosystem Functional Groups. M1.10 Rhodolith/maërl Beds. IUCN, International Union for Conservation of Nature; 2020. doi:10.2305/IUCN.CH.2020.13.en |
2019 |
Rossi S, Isla E, Bosch-Belmar M, et al. Changes of energy fluxes in marine animal forests of the Anthropocene: factors shaping the future seascapeAbstract. Coll M, ed. ICES Journal of Marine Science. 2019;76(7):2008 - 2019. doi:10.1093/icesjms/fsz147 |
2019 |
Bercovich MVivanco, Schubert N, Saá ACAlmeida, Silva J, Horta PA. Multi-level phenotypic plasticity and the persistence of seagrasses along environmental gradients in a subtropical lagoon. Aquatic Botany. 2019;157:24 - 32. doi:10.1016/j.aquabot.2019.06.003 |
2019 |
Schubert N, Salazar VW, Rich WA, et al. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients. Science of The Total Environment. 2019;676:455 - 468. doi:10.1016/j.scitotenv.2019.04.280 |
2018 |
Schubert N, Freitas C, Silva A, et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-33259-4 |
2018 |
Rossi S, Schubert N, Brown D, et al. Linking host morphology and symbiont performance in octocorals. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-31262-3 |
2018 |
Rich WA, Schubert N, Schläpfer N, Carvalho VF, Horta ACL, Horta PA. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Marine Environmental Research. 2018;142:100 - 107. doi:10.1016/j.marenvres.2018.09.026 |
2017 |
Schubert N, Demes K. Phenotypic plasticity in the marine angiosperm Halophila decipiens (Hydrocharitaceae, Streptophyta). Marine Ecology Progress Series. 2017;575:81 - 93. doi:10.3354/meps12222 |
2017 |
Gouvêa LPires, Schubert N, Martins CDalcuche L, et al. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnology and Oceanography. 2017;62(5):2056 - 2075. doi:10.1002/lno.10551 |
2017 |
Schubert N, Brown D, Rossi S. Marine Animal Forests: Symbiotic Versus Non-symbiotic Octocorals: Physiological and Ecological Implications. In: Rossi S, Bramanti L, Gori A, del Valle COrejas Sac, eds. Cham: Springer International Publishing; 2017:1 - 32. doi:10.1007/978-3-319-17001-510.1007/978-3-319-17001-5_54-1 |
2016 |
Horta PAntunes, Riul P, Filho GMAmado, et al. Rhodoliths in Brazil: Current knowledge and potential impacts of climate change. Brazilian Journal of Oceanography. 2016;64(spe2):117 - 136. doi:10.1590/S1679-875920160870064sp2 |
2016 |
Meyer FW, Schubert N, Diele K, Teichberg M, Wild C, Enríquez S. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon. PLOS ONE. 2016;11(8):e0160268. doi:10.1371/journal.pone.016026810.1371/journal.pone.0160268.g00110.1371/journal.pone.0160268.g00210.1371/journal.pone.0160268.g00310.1371/journal.pone.0160268.t00110.1371/journal.pone.0160268.t00210.1371/journal.pone.0160268.t003 |
2016 |
Kerr R, da Cunha LC, Kikuchi RKP, et al. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives. Environmental Management. 2016;57(3):740 - 752. doi:10.1007/s00267-015-0630-x |
2015 |
Schubert N, Colombo-Pallota MFlorencia, Enríquez S. Leaf and canopy scale characterization of the photoprotective response to high-light stress of the seagrass Thalassia testudinum. Limnology and Oceanography. 2015;60(1):286 - 302. doi:10.1002/lno.10024 |
2014 |
Enríquez S, Schubert N. Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nature Communications. 2014;5(1). doi:10.1038/ncomms4835 |
2011 |
Schubert N, García-Mendoza E, Enríquez S. Is the photo-acclimatory response of Rhodophyta conditioned by the species carotenoid profile?. Limnology and Oceanography. 2011;56(6):2347 - 2361. doi:10.4319/lo.2011.56.6.2347 |
2008 |
Schubert N, García-Mendoza E. PHOTOINHIBITION IN RED ALGAL SPECIES WITH DIFFERENT CAROTENOID PROFILES 1. Journal of Phycology. 2008;44(6):1437 - 1446. doi:10.1111/jpy.2008.44.issue-610.1111/j.1529-8817.2008.00590.x |
2006 |
Schubert N, García‐Mendoza E, Pacheco‐Ruiz I. CAROTENOID COMPOSITION OF MARINE RED ALGAE 1. Journal of Phycology. 2006;42(6):1208 - 1216. doi:10.1111/jpy.2006.42.issue-610.1111/j.1529-8817.2006.00274.x |